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Abstract

This paper develops a model of belief influence through communication in an exogenous social
network. The network is weighted and directed, and it enables individuals to listen to others’
opinions about some exogenous parameter of interest. Agents use Bayesian updating rules.
The weight of each link is exogenously given and it specifies the quality of the corresponding
information flow. We explore the effects of the network on the agents’ first-order beliefs about
the parameter and investigate the aggregation of private information in large societies. We
begin by characterizing an agent’s limiting beliefs in terms of some entropy-based measures of
the conditional distributions available to him from the network. Our results on consensus and
correctness of limiting beliefs are in consonance with some of the literature on opinion influence
under non-Bayesian updating rules. First, we show that the achievement of a consensus in the
society is closely related to the presence of prominent agents who are able to crucially change the
evolution of other agents’ opinions over time. Secondly, we show that the correct aggregation of
private information is facilitated when the influence of the prominent agents is not very high.
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1 Introduction

In social environments where individual decisions depend on uncertain parameters, coordination

is often facilitated when agents reach similar beliefs about the actual values of such parameters.1

Examples of these decisions include consumption, occupational, investment, and voting choices.

In practice, the evolution of our beliefs about uncertain variables usually depend on (a) our

own private learning about the variables (e.g., based on private observations or research), and

(b) how we gather information from neighbors, friends, co-workers, local leaders, and political

actors. The links of a social network are channels that transmit opinions about products, job

vacancies, investment opportunities, and political programs.2

In recent years, the size of most social networks has become increasingly large. Through

the new phone technology, email, social media, and the explosive expansion of the internet, the

world has experienced profound improvements in our abilities to access the opinions of greater

numbers of people, even when they are located at great distances. Nowadays, we are able to

cheaply keep in touch with others and find a broad variety of opinions and advise about almost

any type of matter from any place in the globe.

By focusing on relatively large networked societies, the aim of this paper is to explore the

relation between the network that connects a group of agents and the evolution of their first-order

beliefs about some common parameter of interest. We develop a stylized model of network-

based dynamic belief formation, with Bayesian updating rules, where there are two types of

information transmission: (a) each agent receives private information about the parameter from

an external (idiosyncratic) source and (b) there is communication between connected agents

about the information they are obtaining from their sources.

More specifically, consider a group of agents who care about some uncertain exogenous

parameter.3 Each of them begins with some initial priors and observes over time a sequence

of private signals about the parameter. The informativeness of this stream of signals describes

the quality of the agent’s private learning about the parameter, which intuitively could be

associated with, e.g., the technology of his source or the attention level that he is able to put on

the source. In addition, the agents are connected through an exogenous (directed and weighted)

social network that specifies a pattern of relations where each agent can listen to the opinions

of others. Each directed link is characterized by an exogenously given weight that describes

1To fix ideas, consider, e.g., the sort of environments which are commonly modeled as beauty-contest games.
2For instance, some recent papers highlight the importance of social networks in the generation of social capital

(see, e.g., Jackson, Rodŕıguez-Barraquer, and Tan, 2012; Campbell, 2014).
3The parameter could correspond to some economic, social, or political variable. Examples include the prof-

itability of an investment, the effects of some public policy, the ideology of a certain politician, or whether a
certain social movement will spread out.
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the quality of the information transmission from the speaker to the listener. Intuitively, this

weight could be determined, e.g., by the speaker’s communication skills, the listener’s level of

attention or understanding capabilities, or the information transmission technology of the link.

In particular, at each date, each agent receives a non-strategic message from each agent to whom

he has a directed link. Such a message is correlated with the sender’s signal so that it conveys

some information about the signal that the speaker is privately observing.4 Also, through

a link, each agent can receive messages from other indirectly connected agents. We assume

that the signals and messages that each agent receives are, conditionally on the parameter

realization, independent both across time and across senders. Using this framework, we explore

the conditions on the network structure and, in particular, on its weights, under which the agents

reach a consensus in their first-order beliefs about the parameter value. We also investigate the

conditions under which the agents aggregate correctly the decentralized information that they

obtain from their sources.5 This model’s assumptions about what is privately and commonly

known between the agents, how they process the information they receive, and the type of

inferences that they make are motivated and justified by our earlier mentioned emphasis on

large networked societies.

The amount of information that is transmitted from the speaker to the listener is given by

the exogenous weight of their directed link and cannot be manipulated neither by the sender

nor by the receiver.6 We assume that the weight of each link is constant over time, which leads

to stationary updating processes.

To complete the groundwork for our analysis, we need to address two key modeling as-

sumptions. First, following recent developments on the ranking of information, we choose an

entropy-based measure, namely, the power measure to measure of the informativeness of sources

and links. The power measure is the average of the relative entropy of the posterior in the

first period with respect to the prior so that it captures, from an ex-ante viewpoint, the gain of

information in moving from the prior to the posterior.7

Secondly, we need to adopt a notion of correct beliefs for our framework. In our model, the

4At a more intuitive level, the network describes exogenously given conduits through which the agents listen
to others speak about their private learning. As a motivating example, consider a group of investors deciding
their investment in a collective fund. Each investor begins with some priors about the potential profitability of
the fund and collects over time some further information by studying privately a number of characteristics of the
fund. In addition, through communication, each investor has, in each period, some (noisy) access to the private
analyses of the fund features made by other investors.

5Since Condorcet (1785)’s seminal essay, the problem of whether a group of agents who have dispersed infor-
mation will be able to aggregate their pieces of information and reach a correct consensus has been the focus of
a large body of mathematical and philosophical work.

6Thus, in this paper we are not interested in the rich strategic interactions present in a sender-receiver game.
7In contrast with other measures extensively used in decision theory, such as the Blackwell (1953)’s ordering,

the power measure induces complete orders over sets of information structures.
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beliefs of an outside Bayesian observer who begins with some priors and can use over time the

sources available to all agents converge almost surely to some limiting beliefs. This observer’s

beliefs ignore the flows of information through the network. On the other hand, each agent using

only his own source and the information he obtains from others also converges almost surely to

some limiting beliefs. Suppose that all the agents’ beliefs converge to some consensus limiting

beliefs. Then, we ask which network features facilitate that the agents’ limiting beliefs coincide

with the observer’s. A central observation that justifies our approach is that, by a law of large

numbers argument, the aggregation of the decentralized information sources provides us with

an estimate (from an ex-ante viewpoint) of the true parameter value which becomes arbitrarily

accurate as the number of agents in the society grows (in the limit, tending to infinity).

Our results begin by identifying the presence of decay in the flow of information along the

links of the network, in Lemma 1.8 We then turn to provide a simple but complete charac-

terization of an agent’s limiting beliefs, in Theorem 1. Armed with this result, we proceed by

identifying necessary and sufficient conditions, in Theorem 2, under which an agent j is able to

influence another agent i in a way such that both of them end up with the same limiting beliefs

that agent j would reach without communication (i.e., using only his source).9 Our character-

ization result is provided in terms of the power measure of the connections between the agents

in the society and of other entropy-related measures. The advantages of using entropy-related

measures are that they summarize very precisely a number of features of priors, sources, and

links (which, in fact, constitute the primitives of the model), and that they allow for insights

for a fairly general class of distributions.

The main message that arises from Theorem 2 is that the weight of the connections (either

direct or indirect) from i to j must be sufficiently high for agent i to be influenced by agent

j, and that the weight of the connections from agent j to any agent k in the society must be

sufficiently low. The latter condition prevents j from being influenced by any other agent.

Our characterizations of limiting beliefs and of opinion influence (Theorems 1 and 2), com-

bined with our results on the decay of the flow of information (Lemma 1), allow one to identify

those prominent agents in the society who might influence crucially others, and to assess whether

a consensus could finally be achieved.10

8Including some exogenous decay in the flow of information across connections has been common in the
economic literature on networks since the seminal papers by Jackson and Wolinsky (1996), and by Bala and
Goyal (2000). An interesting feature of our model is that the presence of decay can be described very precisely
in terms of the power measures of sources and links.

9This can be naturally interpreted as agent j being able, as time evolves, to convince agent i to share his views
about the uncertain parameter.

10For applications, this approach seems very useful in those cases where observables could be used to estimate
distributions over signals and messages. In these cases, the power measures proposed in this paper can be used as a
proxy to describe the strength of connexions in networks. Some recent empirical papers (Banerjee, Chandrasekhar,
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Proposition 1 provides a sufficient condition on the weights of the connections under which,

provided that there is a consensus, the agents’ limiting beliefs aggregate correctly the information

available to all of them through their sources. We show that a society with consensus attains

correct limiting beliefs if the influence of the prominent agents is not so large so as to distort

the evolution of beliefs that results by aggregating the sources. The intuition is that some limits

on the influence of the prominent agents helps preventing cases of “large-scale manipulation” in

which such agents could use their “favorable” positions in the network to bias everyone towards

opinions that do not necessarily correspond to the aggregation of all the agents’ sources. Our

last result, Proposition 2, considers a particular network architecture whereby one agent enjoys

the most favorable position to influence everyone else and, at the same time, not being influenced

by the others, namely, the center-directed star network. We show that, provided that the central

agent is able to influence the others, correct limiting beliefs are precluded for societies large

enough.

Our model is closely related to, and motivated by, the opinion influence literature that builds

on the DeGroot (1974)’s benchmark. This literature assumes that agents are non-Bayesian and

use some “rule of thumb” to incorporate others’ opinions into their belief updating.11 Within

this literature, perhaps the paper closest to ours in terms of the questions asked is Golub and

Jackson (2010). They show that limiting beliefs arbitrarily close to the truth are obtained when

the influence of the most influential agent vanishes as the size of the society tends to infinity.

Our results bear a clear resemblance with theirs. Although agents use Bayesian rules in our

model, we also obtain their message that, to attain consensus and correct limiting beliefs, a

certain level of popularity is quite convenient whereas a disproportionate popularity could be

harmful. Given the similarity in the main insights, our model can be viewed as a methodological

contribution, with a Bayesian foundation, that reinforces the general picture that emerges from

these rather tractable non-Bayesian models of opinion influence.

The rest of the paper is organized as follows. Section 2 comments further on the related

literature, Section 3 presents the model, Section 4 analyses the attainment of consensus and of

correct limiting beliefs, and Section 5 concludes with a discussion of the results and of possible

extensions. The proofs of all the results are grouped together in the Appendix.

Duflo, and Jackson, 2013 and 2014) have obtained estimations of the strength of connexions in particular social
communication networks.

11In the DeGroot’s model, agents update their beliefs by averaging their neighbors’ beliefs according to some
exogenous weights that describe the intensity of the links between the agents. While a major advantage of
these models lies in their tractability, common features with the present paper are that the weights of the links
are exogenous and constant over time, and that the induced belief-revision processes are stationary. A classical
contribution in this literature is DeMarzo, Vayanos, and Zwiebel (2003) who propose a network-based explanation
for the emergence of “unidimensional” opinions.
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2 Related Literature

This paper is related to the theoretical literature that, considering higher-order beliefs, asks

whether a group of agents commonly learn the true parameter.12 Our approach is different in

that, motivated by our interest on large networked societies, we focus only on the agents’ first-

order posteriors about the parameter when they start with possibly different priors.13 Another

important difference between the current paper and the models within the learning literature

with higher-order beliefs (e.g., Parikh and Krasucki, 1990; Heifetz, 1996; Koessler, 2001; Steiner

and Stewart, 2011; Cripps, Mailath, Ely, and Samuelson, 2008 and 2013) is in the fact that this

literature evaluates the correctness of beliefs by conditioning the posteriors on a given value of

the parameter, which is taken as the actual value.14

The present paper relates also to several branches of the literature on influence in networks

with non-Bayesian rules other than the one that stems from the DeGroot’s benchmark. Ace-

moglu, Ozdaglar, and ParandehGheibi (2010) consider that the agents meet pairwise and adopt

the average of their pre-meeting beliefs. They study how the presence of agents who influence

others, but do not change their own beliefs, interferes with the spread of information along the

network. Although they do not focus on consensus in particular, our model allows for insights

with a similar flavor since some spread of beliefs among agents with different opinions is re-

quired for consensus in our paper. Also, the question of whether consensus is attained under

non-Bayesian updating rules is analyzed by Acemoglu, Como, Fagnani, and Ozdaglar (2013).

They distinguish between “regular” agents, who update their beliefs according to the informa-

tion they receive from their neighbors, and “stubborn” agents, who never update their beliefs.

They show that consensus is never obtained when the society contains stubborn agents with

different opinions. Again, this insight bears some resemblance with ours when the connections

12In a setting without communication among the agents, Cripps, Ely, Mailath, and Samuelson (2008) show
that (approximate) common learning of the parameter is attained when signals are sufficiently informative and
the sets of signals are finite. They assume that the agents start with common priors and ask whether each agent
not only assigns sufficiently high probability to some given parameter value but also to the event that each other
agent assigns high probability to such a value, and so on, ad infinitum.

13Thus, we do not consider ex-ante probabilistic assessments that the agents could make over the histories
underlying their beliefs as we do not explore their higher-order beliefs. Importantly, the result of common
learning attainment by Cripps, Mailath, Ely, and Samuelson (2008) mentioned in footnote 12 requires that the
sets of signals and messages be finite. This is not surprising since they assume that each agent is able to keep
track of the higher-order beliefs of all agents about the signals each of them is receiving at each period. Clearly,
this approach is less appealing when one considers a society where the number of its members is large. In fact,
the argument given by Rubinstein (1989) in his celebrated email game suggests that common learning of the true
parameter is precluded with arbitrarily large societies.

14In other words, this strand of the literature uses an ex-post perspective to regard parameter values as being
correct while we use an ex-ante viewpoint. Our model can be regarded as an attempt to introduce Bayesian
updating rules into the DeGroot’s framework of opinion influence and evolution of first-order beliefs. Accordingly,
as in the approach pursued by DeMarzo, Vayanos, and Zwiebel (2003), and by Golub and Jackson (2010), our
notion of correctness asks whether the network structure allows for the aggregation of the decentralized sources
of private information.
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of some agent do not allow him to be sufficiently influenced by others.

Using a Gaussian information structure, belief dynamics and the attainment of correct con-

sensus beliefs in social networks are also recently explored, in way complementary to the one

carried out in this paper, by Azomahou and Opolot (2014). Their model considers both Bayesian

and non-Bayesian updating rules. For the Bayesian case, they obtain the interesting result that,

under certain conditions, if the agents start with common priors, then consensus and correct

aggregation of the decentralized information always follow, regardless of the network structure.

The present paper is different from theirs mainly in our assumptions on the the agents’ infor-

mation processing capabilities and on the way in which they transmit information to others.

At a more instrumental level, the current paper is related to the literature on strategic

communication initiated by Crawford and Sobel (1982) since the transmission of information

in our model through signals and messages is modeled, for each period, exact the same way in

which a sender transmits information to a receiver in a sender-receiver or cheap talk game.15

Finally, this paper is also related to the statistical branch of information theory and to a

growing diverse economic literature that uses entropy-based measures. The concept of power of a

signal that we use was originally proposed by Shannon (1948) in his celebrated paper. Entropy-

based measures have been subsequently used by applied mathematicians to model a number

of aspects of communication, ranging from data compression and coding to channel capacity

or distortion theory. Nevertheless, such measures have remained seldom used by economists

for decades. Recently, a few papers have incorporated entropy-based measures to account for

informativeness levels in several economic phenomena. For example, Sciubba (2005) uses the

power of a signal to rank information in her work on survival of traders in financial markets.

Cabrales, Gossner, and Serrano (2013) propose, for a class of no-arbitrage investment problems,

an entropy-based measure, which formally coincides with the power measure, and that they term

as entropy informativeness.

3 The Model

We use ∆(X) throughout the paper to denote the set of all Borel probability distributions on

a given set X. Also, for a probability distribution P , we use EP [ · ] to denote the expectation

operator with respect to P .

There is a finite set of agents N = {1, 2, . . . , n} who care about an exogenous parameter

θ ∈ Θ = {θ1, θ2, . . . , θL}.16 Time is discrete and indexed by t ∈ {0, 1, 2, . . . }. The true value of

15As mentioned earlier, the crucial difference is that the amount of information transmitted in our model is not
endogenously chosen but it is exogenously given by the description of sources and links.

16Although the parameter space is assumed to be finite, the extension of our main results to a compact, but
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θ is selected by nature in period t = 0. Each agent i begins with a prior distribution pi ∈ ∆(Θ)

that describes his (subjective) beliefs about the parameter in period t = 0.

Following a classical argument, forcefully constructed by Savage (1954, p. 48), most Bayesian

learning models assume that all agents share the same priors. Some recent theoretical research,

however, concludes that Savage (1954)’s Bayesian foundations are not necessarily very strong

even in individual learning problems.17 Our view in this paper is that assuming that the agents

already start with common priors is quite restrictive to explore complex belief dynamics and

to understand where the limiting beliefs of a set of individuals come from. As required in any

standard model of belief dynamics, the agents first have to start with some priors, but we do

not restrict them to be necessarily common.18

3.1 External Sources

The realized parameter value θ is not observed directly by any agent. Instead, each agent ob-

tains some private (noisy) information about the parameter through an external (idiosyncratic)

source of information. The interpretation of an agent’s source is that of a mean, technology

or institution through which he carries out his private research over time about the parameter.

To fix ideas, we can think of a source as a newspaper to which the agent is subscribed. Say,

for example, that one agent i obtains information about some financial variable by reading the

Wall Street Journal (WSJ) every week while other agent j is subscribed to the Financial Times

(FT).19

Agent i’s source generates in each period t ≥ 1 a signal realization sit ∈ S = {s1, s2, . . . , sL}

which is privately observed by i. When the true parameter value is θ, agent i’s information

source delivers signal s ∈ S with probability φθi (s). We use φi(s) to denote the corresponding

unconditional distribution. A signal profile in period t is denoted by st = (sit)i∈N ∈ Sn. An

external source for agent i is a set of conditional distributions over signals

Φi :=
{
φθi ∈ ∆(S) : θ ∈ Θ

}
.

Throughout the paper, we impose the following technical assumption on the distributions that

specify the external sources.

not necessarily finite, parameter space would only change sums to integrals in the appropriate formulae.
17For example, Acemoglu, Chernozhukov, and Yildiz (2009) show that, under mild assumptions, Bayesian

updating from signals does not necessarily lead to agreement about the parameter true value. This result challenges
the classical justification for the common priors premise.

18Nevertheless, to ease the technical details and notational burden, the result in Lemma 1 and all our examples
are presented for the common priors case.

19By construction, the information that the agent receives through his source does not include any information
that he can receive from other agents in the society.
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Assumption 1. For each agent i, there exists at least a parameter value θ such that the

conditional distribution φθi ∈ ∆(S) has full support.

Assumption 1 above guarantees that the agents’ limiting beliefs are well defined. In addition,

some results of the paper will require that we strengthen further our assumptions on these

distributions by imposing the following requirement instead.

Assumption 2. For each agent i and each parameter value θ, the conditional distribution

φθi ∈ ∆(S) has full support.

Using Bayes’ rule, a source Φi enables us to update, in each period t ≥ 1, any belief about the

parameter θ. Because distributions over signals are constant over time, this updating process

is stationary. Let sti = (si1, . . . , sit) be a sequence of signals observed by agent i up to period

t. Then, when agent i uses the source Φi, we denote by q
sti
i ∈ ∆(Θ) his posteriors about the

parameter upon observing the sequence of signals sti. By considering that agents learn in an

imprecise way using their sources, we attempt to capture practical situations in which either the

quality of the reports provided by the source, the available information transmission technology,

the agent’s degree of attention or his understanding/cognitive capabilities do not allow him to

fully learn the parameter value.20

3.2 The Social Network and its Directed Links

We consider that the agents receive information not only from their sources but they can also

listen to the opinions of others. More precisely, the agents are connected through an exogenous

social network which, in each period t, allows them to pay attention to the opinions about θ that

others are forming themselves using their own sources. We focus on directed networks where

links are one-sided.

A directed link from agent i to agent j is denoted by Ψij and it allows i to receive messages

from j over time. Specifically, we assume that, in each period t ≥ 1, each agent i receives a

(private) message realization mijt ∈M = {m1,m2, . . . ,mL} from each agent j to whom he has

a directed link.21 The message mijt is correlated with the signal sjt so that it conveys some

(noisy) information about the signal that the sender j is observing at that t. Then, agent i can

use such information about sjt to update his beliefs about θ. Intuitively, through this type of

communication, agent i has some (noisy) access to the private research about θ that agent j

20Nevertheless, our model also includes the possibility that the agents do obtain full information about θ
using their sources. Following the terminology of sender-receiver games, this is the extreme case described by a
completely separating information source.

21We assume that |S| = |M | = |Θ| in order to allow both an information source and a directed link for full
information disclosure.
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conducts using his source Φj . In the next subsection, we will formally present the definition of a

directed link Ψij , the particular assumptions imposed on the agents’ informational capabilities,

and the way in which they use a directed link to update their beliefs.

Besides direct (perhaps noisy) attention to the sources of others, we consider that the network

also allows for indirect attention. More precisely, we assume that messages can be transmitted

indirectly through directed links. Hence, given two directed links Ψik and Ψkj , agent k can

receive a message from agent j and then pass it through to agent i. Through the links Ψik and

Ψkj , agent i receives, in each period, two different messages, one direct message from agent k

(mik) and one indirect message from agent j (mij , which was previously received by agent k

from agent j). The message mik conveys information about the signal sk observed by agent k

while the message mij conveys information about the signal sj observed by agent j. Nonetheless,

for the clarity of exposition, it is convenient to focus first on the description of the transmission

only of direct messages through links.

3.3 Information Transmission (only) with Direct Messages

Suppose for the moment that the agents receive only direct messages so that an agent cannot

pass to another agent a message that he has received from a third agent. A message vector22

received by agent i in period t is denoted by mit = (mijt)j∈N\{i} and a message profile in period t

is denoted by mt = (mit)i∈N . For each period t ≥ 1, the distribution over messages observed by

agent i, conditional on agent j’s signal realization sjt = s, is denoted by σsij and the corresponding

unconditional distribution is denoted by σij . We then define a message protocol from agent j to

agent i as a set of conditional distributions over messages Σij :=
{
σsij ∈ ∆(M) : s ∈ S

}
.

Bayes’ rule allows us to use the message protocol Σij to obtain, in each period t, some

posteriors about j’s private signal sjt by observing the message mijt. More importantly, by

combining the source Φj with the message protocol Σij according to the total probability rule,

we can obtain Bayesian posteriors about θ. As in the case of external sources, this updating

process is stationary since distributions over messages are constant over time.

The directed link from agent i to agent j associated with the signal Φj and the message

protocol Σij is the set of conditional distributions over messages

Ψij :=

{
ψθij ∈ ∆(M) : θ ∈ Θ, such that ψθij(m) =

∑
S

σsij(m)φθj(s)

}
. (1)

22In principle, our description of message vectors captures a situation where each agent receives messages from
each other agent in the society. Nevertheless, the specification of a link Ψij will determine the degree of infor-
mativeness of the messages mijt that flow through it. In some cases, the corresponding degree of informativeness
may be null, which is interpreted as if there is actually no directed link from agent i to agent j and, therefore, as
if i receives no message whatsoever from j.
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Intuitively, the role of a directed link Ψij is that of allowing agent i to have some access to agent

j’s private signal and, by doing so, to update his beliefs about the parameter θ.

Let mt
ij = (mij1, . . . ,mijt) be a sequence of messages received by agent i from agent j up to

period t. We use q
mtij
i ∈ ∆(Θ) to denote agent i’s posteriors about the parameter upon receiving

the sequence of messages mt
ij from agent j.

3.3.1 The Informational Capabilities of the Agents

At this point, we describe the method of information processing followed by the agents. Specif-

ically, we describe what knows privately each individual and what is commonly known between

some agents. Also, we describe how each agent combines his priors and the information he

receives, both from his source and from his communication with others, to obtain his posteriors

at each date. Unlike most Bayesian learning models, this paper does not assume that all agents

have the same beliefs about the informational primitives of the model (i.e., priors pi, external

sources Φi, and message protocols Σij , for each i, j ∈ N). Neither it does assume that such

beliefs coincide with the true data generating processes nor that there is common knowledge

that all agents share such beliefs. Our view is that while these informational requirements are

stringent even in individual learning problems, they become exponentially complex and demand-

ing in social contexts.23 The assumption that each agent is only uncertain about the value of

θ and that there is no doubt about the underlying “model of the world” is perhaps not a good

approximation to reality in social environments. Furthermore, given the emphasis of this paper

on real-world large networked societies, the degree of complexity necessary for each agent be

able to form higher-order accurate conjectures about the private signals that each other agent is

receiving in each period seems too high. Given these challenges of the Bayesian method in social

situations, we take a pragmatic approach to consider the agents’ informational capabilities when

it comes to complex issues.

First, we assume that priors are private information and that agents do not incorporate

others’ priors into their own information updating processes. By construction, agents are not

interested in making any inferences about others’ priors. In short, we assume that each agent

begins with his priors, updates them over time using his own source, and, under the restrictions

imposed by the network structure, makes some inferences over time about the information that

other agents are receiving from their sources.

Secondly, we assume that for each directed link Ψij , the conditional distributions associated

23For a discussion both of (a) the challenges implied by this type of informational requirements in social
situations and of (b) the of restrictiveness of the assumption of common priors and common knowledge of the true
generating data processes see, e.g., Acemoglu and Ozdaglar (2011)’s excellent survey of Bayesian and non-Bayesian
models of opinion influence in social networks.
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to the source Φj and the message protocol Σij are commonly known only between agents i and

j.24 Therefore, using the total probability rule, as expressed in (1) above, agents i and j have

common knowledge about Ψij . Agent i is then able to use privately each conditional probability

law ψθij (θ ∈ Θ) to update his priors about θ in each t ≥ 1. The interpretation is that agent i has

an understanding of what type of messages to expect from j when the true parameter value is

θ. However, in general, agent i cannot use source Φj with the same precision as j does because

he is making noisy inferences about the signals sjt that j is receiving.25 Then, agent i places

himself in j’s position and, under the restrictions imposed by the inferences that he makes about

the signals sjt, uses Φj to update his own priors pi, without making any use of j’s priors. Going

back to our newspaper subscription example, the intuition is that the WSJ’s subscriber cannot

observe directly what the FT’s subscriber is actually learning by reading each weekly issue of

the FT. Instead, the WSJ’s subscriber receives (noisy) messages from the FT’s subscriber that

gives him some information about what the latter is learning by reading his weekly issues. In

short, the WSJ’s subscriber cannot read directly the FT but can hear the FT’s subscriber speak

about what he is reading.

Given the message protocol Σij , the information transmission process from j to i about the

signals sjt through the messages mijt is modeled as in the canonical cheap talk framework.26

Therefore, this model does include the possibility that agent j transmits to agent i, with full

precision, the signal sjt that he is observing.27 However, the possibility that message protocols

do not transmit signals with full precision is also allowed. The idea here is to capture practical

situations where, because of our understanding capabilities or the available information trans-

mission technology, we are not able, by listening to someone, to learn as much as he actually does

using his own information source. In many real-world situations, some information is often lost

in the inter-person communication process. This decay result is formally obtained in Lemma 1.

The amount of information that agent i receives from j using the directed link Ψij is described

by its weight and, in the next subsection, we introduce formally our approach to measure such

weight.

Because of the above assumptions on the agents’ informational capabilities, we consider that

each agent forms only first-order beliefs about θ using the Bayesian updating rules attached to

his source and links. However, he is not able to form any accurate higher-order conjectures about

24Thus, agents i and j commonly know the main features of the link that connects them but such information
remains unknown to any other agent.

25Recall that, although the conditional distributions associated with Φj are known by an agent i who has a
link Ψij , the particular signal realizations sjt remain j’s private information.

26See, e.g., the classical sender-receiver framework introduced by Crawford and Sobel (1982).
27Using the terminology of sender-receiver games, this is the extreme case described by a completely separating

message protocol Σij .
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the histories underlying the signals that all agents are privately observing. Thus, given these

constraints imposed their information processing, agents are not fully rational in this model.

Yet, with regards to the information transmission through each link, they update their beliefs in

a Bayesian manner (in the same fashion as in a sender-receiver game). This gives us a tractable

reference framework to which the non-Bayesian models related to the DeGroot’s benchmark of

opinion influence can be compared.

Finally, we do not allow for the possibility that the agents manipulate strategically the

messages they send, neither that they lie or withhold any information they posses about their

signals. The information they send to others is noisy but exogenously determined. A plausible

interpretation is that the agents make some investments in their links (e.g., investments in

technological connexions, friendship or club relations, social networks through mobile devices

or the internet) in a way such that only hard information can subsequently flow through them.

Then, once the links are formed, their weights remain fixed and cannot be altered neither by

senders nor by receivers.

3.4 Measuring the Informativeness of Sources and Links

To measure the degree of informativeness about θ attached to the agents’ sources and to the

communication between them, we use some entropy-based concepts.

Definition 1. Let X be a finite set. The entropy (or Shannon entropy) of a probability

distribution P ∈ ∆(X) is28

H(P ) := −
∑
X

P (x) logP (x).

The entropy of a distribution is always nonnegative and measures the average information

content one is missing from the fact that the true realization of the associated random variable

is unknown. In other words, it measures the ex-ante uncertainty of the corresponding random

variable. To measure the information content of sources and links, we rely on the concept of

relative entropy between distributions.

Definition 2. Let X be a finite set and let P,Q ∈ ∆(X). The relative entropy (or Kullback-

Leiber distance) of P with respect to Q is29

D(P ||Q) :=
∑
X

P (x) log
P (x)

Q(x)
.

28In Definition 1, it follows the convention 0 log 0 = 0, which is justified by continuity.
29The following conventions are used: 0 log(0/0) = 0 and, based on continuity arguments, 0 log(0/a) = 0 and

a log(a/0) = ∞.
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The relative entropy is not a metric30 but it constitutes a formal measure of the gain of

information in moving from distribution Q to P . The relative entropy is always nonnegative

and equals zero if and only if P = Q almost everywhere.

We apply the relative entropy to the agents’ posteriors in period t = 1 with respect to their

priors and, specifically, define the power of the external source Φi as the expectation (over the

possible signals s1
i ∈ S that i can observe) of the relative entropy of q

s1i
i with respect to pi.

Definition 3 (Power of the external source).

P(Φi) :=
∑
S

φi(s
1
i )D

(
q
s1i
i || pi

)
. (2)

The power measure allows us to rank completely any set of sources according to their degree

of informativeness. Then, we say that Φi is at least as informative as Φ′i if P(Φi) ≥ P(Φ′i). Notice

that the power of a signal is a relevant measure to study how an agent’s beliefs evolve using only

his private learning, when he does not listen to anyone else, i.e., to study the evolution of the

posteriors q
sti
i . In our social context, however, agents do hear others’ opinions and, therefore, the

relevant measure to study the beliefs dynamics of an agent when communication is allowed for

must take into account the messages that he receives. To this end, we define, in a way analogous

to the power of a source, the power of the directed link Ψij as the expectation (over the possibles

messages m1
ij ∈ M that i can receive from j) of the relative entropy of the posterior q

m1
ij

i with

respect to the prior pi.

Definition 4 (Power of the directed link).

P(Ψij) :=
∑
M

ψij(m
1
ij)D

(
q
m1
ij

i || pi
)
. (3)

Using the power of a directed link, we say that Ψij is at least as informative as Ψ′ij if

P(Ψij) ≥ P(Ψ′ij) (i.e., the weight of Ψij is at least as larger as the weight of Ψ′ij). If P(Ψ′ij) = 0,

then we interpret this as if there is actually no directed link from agent i to agent j. To define

P(Φi) and P(Ψij), we focus on the discrepancy only between posteriors in t = 1 and priors since

the associated Bayesian updating processes are stationary.

The role of the link Ψij is to enable i to update his beliefs about θ by listening to j.

Recall that the link does so by allowing i to obtain some (perhaps noisy) information about

the signals that j is observing. Therefore, the power (or weight) P(Ψij) depends positively on

both the quality of message protocol Σij and the quality of the source Φj (which is, in turn,

measured by P(Φj)). This can be noted from the expression in (1), which implies that the

30In particular, the relative entropy is not symmetric and it does not satisfy the triangle inequality either.
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distributions ψθij , ψij ∈ ∆(M), as well as the induced Bayesian posteriors q
mtij
i ∈ ∆(Θ), depend

on the (exogenous) specifications of Σij and Φj . To see formally that the power of a link Ψij

is positively related to the power of the source Φj , let us consider for technical simplicity the

case with common priors. Thus, if all agents begin with some priors p ∈ ∆(Θ), then it can be

verified that P(Ψij) = P(Φj) +R(Σij), where the term R(Σij) is specified as

R(Σij) :=
∑
Θ

∑
M

∑
S

p(θ)φθj(s)σ
s
ij(m) log

φj(s)
∑

S σ
s′
ij(m)φθj(s

′)

φθj(s)
∑

S σ
s′
ij(m)φj(s′)

.

The term R(Σij) is always nonpositive and it equals zero if and only if Σij is a completely separat-

ing message protocol (i.e., when Σij fully reveals to agent i the signal that agent j observes).31

Intuitively, a high power of a link directed to a FT’s subscriber is obtained when either the

particular subscription provides him with good information (because of the available technology

or the attention that the subscriber puts on his reading), or we obtain good information from

the FT’s subscriber about what he is reading (because of our attention to what he says or his

communication skills, or the technology through which we communicate), or both.

We are ready now to define a directed network. A directed network Ψ is a set of directed

weighted links which connects the agents in the society:

Ψ := {Ψij : i, j ∈ N, i 6= j, such that P(Ψij) > 0} .

We turn now describe how information is transmitted through indirect messages.

3.5 Information Transmitted (both) with Direct and Indirect Messages

To describe the transmission of information through indirect connexions, we now extend some

of the concepts introduced in the previous subsection. A directed path from agent i to agent j

is a sequence γij = (Ψii1 ,Ψi1i2 , . . . ,ΨiKj) of directed links such that P(Ψii1) > 0, P(ΨiKj) > 0,

and P(Ψikik+1
) > 0 for each k ∈ {1, . . . ,K − 1}. We use Γij [Ψ] to denote the set of all directed

paths from agent i to agent j under network Ψ and Ni := {j ∈ N : there is some γij ∈ Γij [Ψ]}

to denote set of agents to whom agent i has a directed path. A directed network Ψ is connected

if, for each agent i ∈ N , there is at least one directed path γij ∈ Γij [Ψ] to each other agent

j ∈ N \ {i}. Intuitively, a network is connected if it allows each agent to hear (either directly

or indirectly) the opinions of each other agent in the society. Network connectedness can be

regarded as a basic prerequisite to study the achievement of a consensus.

For a network Ψ, an agent i may receive messages from other agent j through (possibly)

multiple paths γij ∈ Γij [Ψ]. To avoid informational redundancies, we will restrict attention to

31The technical arguments under these claims appear in the proof of Lemma 1.
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those paths which convey the highest amount of information.32

For the transmission of indirect messages, we make the natural assumption that an agent k

uses the same conditional distribution σskik = σ
mkj
ik to transmit information to agent i both about

the signal sk that he observes and about the message mkj that he receives from another agent

j. The interpretation is that we consider the existence of a common technology for information

transmission, which is equally used for both signals and messages that pass from one agent to

another.

Let ψθij [γij ] ∈ ∆(M) denote the distribution over messages received by i from j through the

directed path γij , conditional on the parameter value being θ. Let the corresponding uncondi-

tional distribution be denoted by ψij [γij ]. For a directed path γij , let πsγij ∈ ∆(M) denote the

conditional distribution over messages received by agent i from agent j, conditional on agent j

observing signal sj = s. Then, for a directed path γij = (Ψii1 ,Ψi1i2 , . . . ,ΨiKj), using the total

probability rule, we obtain, for the message mij = m:

πsγij (m) =
∑
M

· · ·
∑
M

σ
mi1i2
ii1

(m)

K−2∏
k=1

σ
mik+1ik+2

ikik+1
(mikik+1

)σ
miKj
iK−1iK

(miK−1iK )σsiKj(miKj). (4)

Using the distribution πsγij specified above, we then obtain the conditional probability that agent

i receives indirectly a message m through the path γij = (Ψii1 ,Ψi1i2 , . . . ,ΨiKj) when the true

parameter value is θ, i.e., ψθij [γij ](m) =
∑

S π
s
γij (m)φθj(s). We use q

mtij
i [γij ] ∈ ∆(Θ) to denote

agent i’s posteriors about the parameter, conditional on receiving the sequence of messages mt
ij

from agent j through the path γij . We can extend straightforwardly the concept of power of a

link to a path. The power of the path γij is defined as

P(γij) :=
∑
M

ψij [γij ](m
1
ij)D

(
q
m1
ij

i [γij ] || pi
)
. (5)

Note that large values P(γij) of the power of a path are associated with a highly informative

source Φj and/or highly informative message protocols Σii1 ,Σi1i2 , . . . ,ΣiKj . Formally, from

the expression in (4), the distributions ψθij [γij ], ψij [γij ] ∈ ∆(M), and the induced Bayesian

posteriors q
mtij
i [γij ] ∈ ∆(Θ), depend on the description of j’s source and of the message protocols

throughout the path γij .

32Note that the information that an agent i receives from another agent j through two different paths γij , γ
′
ij ∈

Γij [Ψ] refers only to the information provided by the same source Φj to agent j. Thus, the information that flows
through any of these paths does not include any information attached to the sources of the agents located along
any of the two paths. Suppose, e.g., that P(γij) > P(γ′ij). This corresponds intuitively to a situation where the
information about j’s private learning that flows through γ′ij is relatively more affected by decay (as formally
described in Lemma 1) than the information that flows through γij . Thus, γij and γ′ij would provide i with two
different Bayesian updating processes about j’s private learning from Φj . Yet, since these two processes cannot
be combined to obtain a more informative updating process, we choose to focus only on the path γij .
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As mentioned earlier, agent i can receive indirect messages from another agent j through

several different paths in the network. We then restrict attention to those paths in the set{
γ̂ij ∈ Γij [Ψ] : P(γ̂ij) ≥ P(γij) ∀γij ∈ Γij [Ψ]

}
.

If the set above is not singleton, then we randomly pick one of its elements as our path of interest

and denote it by γ̂ij . For future reference, we will denote ψθij [γ̂ij ] =: ψ̂θij and ψij [γ̂ij ] =: ψ̂ij .

An implication of our characterization of limiting beliefs, Theorem 1, is that the agents’

priors do not influence their limiting beliefs. In this model, an agent i’s limiting beliefs are

entirely determined by the influences or biases described by both his information source Φi and

by all his directed paths γ̂ij . Nevertheless, as we will discuss in Subsection 4.2, agents’ priors

do affect the speed of convergence of their first-order posteriors to their limiting beliefs.

3.6 Evolution of Beliefs, Consensus, and Correct Beliefs

Let us introduce a few additional concepts to analyze the evolution of the agents’ first-order

posteriors. A period-t history for agent i is a vector of sequences hti :=
(
sti, (m

t
ij)j 6=i

)
of signals

and messages vectors received by agent i up to period t. Let Ht
i be all histories of length t

for player i and let Hi = ∪t≥1H
t
i be all histories for player i and let hi ∈ Hi denote a generic

history for agent i. We impose the following assumption on the (conditional) independence of

the signals and messages that any agent receives.

Assumption 3. For each agent i ∈ N , each history hi ∈ Hi is independent, conditional on the

parameter realization θ, both across periods t ≥ 1 and across senders j 6= i.

Agent i’s posteriors about θ are then given by the random variable q
hti
i (θ) : Θ → [0, 1]. For

each agent i and each value of the parameter θ, the sequence of random variables
{
q
hti
i (θ)

}∞
t=1

is

a bounded martingale,33 which ensures that the agents’ posterior beliefs converge almost surely

(see, e.g., Billingsley, 1995, Theorem 35.5).

Under our assumptions on the agents’ informational capabilities and on the conditional

independence of signals both across periods and agents, Assumption 3, Bayes’ rule gives us:

q
h1
i
i (θ) =

φθi (si1)
∏
j∈Ni ψ̂

θ
ij(mij1)pi(θ)∑

θ′∈Θ φ
θ′
i (si1)

∏
j∈Ni ψ̂

θ′
ij (mij1)pi(θ′)

and

q
hti
i (θ) =

φθi (sit)
∏
j∈Ni ψ̂

θ
ij(mijt)q

ht−1
i
i (θ)∑

θ′∈Θ φ
θ′
i (sit)

∏
j∈Ni ψ̂

θ′
ij (mijt)q

ht−1
i
i (θ′)

∀t > 1.

33More formally,
{
q
hti
i (θ)

}∞
t=1

is a bounded martingale with respect to the (conditional) measure on Θ which is

induced by the priors pi, i ∈ N , and the conditional distributions φθi , ψ̂
θ
ij , for i, j ∈ N .
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Then, by iterating recursively the expressions above, we have:

q
hti
i (θ) =

∏t
τ=1 φ

θ
i (siτ )

∏
j∈Ni ψ̂

θ
ij(mijτ )pi(θ)∑

θ′∈Θ

∏t
τ=1 φ

θ′
i (siτ )

∏
j∈Ni ψ̂

θ′
ij (mijτ )pi(θ′)

.

Furthermore, the expression above can be conveniently rewritten as

q
hti
i (θ) =

1 +
∑
θ′ 6=θ

t∏
τ=1

φθ
′
i (siτ )

∏
j∈Ni ψ̂

θ′
ij (mijτ )pi(θ

′)

φθi (siτ )
∏
j∈Ni ψ̂

θ
ij(mijτ )pi(θ)

−1

, (6)

which will be our key equation to study the agents’ limiting beliefs.

Definition 5. A consensus is (asymptotically) achieved in the society if the posterior beliefs of

all agents converge to the same value regardless of their priors, that is, if for each i ∈ N , each

pi ∈ ∆(Θ), and for some (common) probability distribution p ∈ ∆(Θ), we have limt→∞ q
hti
i = p.

Our notion of correct beliefs requires that the network permits the aggregation of the pieces

of information transmitted by the agents’ sources. Let us consider an external observer who has

access to the sources available to all agents in the society but cannot use any connexion in the

network. The observer’s priors are given by a distribution pob ∈ ∆(Θ). A period-t history for

the external observer is a sequence ht := (s0, s1, . . . , st) of signal profiles. Let Ht be the set

of all histories of length t for the external observer and H = ∪t≥1H
t be the set of all histories

for the external observer. The posteriors of the external observer about θ are given by the

random variable qh
t

ob(θ) : Θ→ [0, 1].34 With these preliminaries in hand, correct limiting beliefs

require that the communication processes allowed by the network structure aggregate the diverse

information obtained by the agents (from their sources), exactly such as the external observer

does.

A key observation to justify our approach to correct limiting beliefs is that, for large enough

societies, the observer’s limiting beliefs are arbitrarily accurate estimates of the true parameter

value. It follows from a standard law of large numbers argument35 that, according to the infor-

mation obtained by aggregating all distributions φθi (i ∈ N), the resulting posteriors converge

to put probability one on the true parameter value. Of course, this approach is intuitively more

compelling for large enough societies.

Definition 6. The directed network Ψ attains correct limiting beliefs if a consensus is achieved

in the society and, in addition, for each i ∈ N , we have limt→∞ q
hti
i = limt→∞ q

ht

ob.

34Again, for each value of the parameter θ, the sequence of random variables
{
qh

t

ob(θ)
}∞
t=1

is a bounded martingale
so that the external observer’s posteriors converge almost surely.

35For instance, Doob’s (1994) consistency Theorem.
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The external observer’s posteriors are obtained analogously to those of any agent (as derived

in expression (6)) and, therefore, we omit the details.

Finally, note that this paper makes use of the notion of surely convergence (or pointwise

convergence) of random variables in order to study whether posteriors converge to some limiting

beliefs. Since surely convergence implies almost surely convergence, if a consensus occurs and

the number of agents is sufficiently large, then our notion of correct limiting beliefs agrees with

the notion of asymptotic learning36 used by some of the related literature (see, e.g., Acemoglu,

Dahleh, Lobel, and Ozdaglar, 2011).

4 Results

4.1 Decay in the Flow of Information

Informativeness levels decrease as information flows from one link to another. By construction,

this model captures the presence of some (exogenous) decay in the transmission of information

since it allows for sources and message protocols that do not fully disclose information. Only

when the message protocol Σij is completely separating, there is no loss of information and thus

agent i obtains, through the link Ψij , exactly the same amount of information about θ as agent

j does using directly his source Φj . With the same logic, decay is also present when information

is conveyed by indirect messages. For the common priors case, the following lemma provides

these intuitive results in terms of the power measure.

Lemma 1 (Decay in the Transmission of Information). (a) Consider a directed link in

a social network Ψij ∈ Ψ, and suppose that agents i and j have the same priors p. Then,

P(Ψij) ≤ P(Φj). Moreover, P(Ψij) = P(Φj) if and only if the message protocol Σij associated

with the directed link Ψij is such that agent i fully learns the signals observed by agent j from

the external source associated with Φj. (b) Consider a directed path in a social network γij =

(Ψik,Ψkj) ∈ Γij(Ψ). Suppose that agents i and j have the same priors p. Then, P(γij) ≤ P(Ψkj).

Moreover, P(γij) = P(Ψkj) if and only if the message protocol Σik associated with the directed

link Ψik is such that agent i fully learns the messages received by agent k from agent j.

For the heterogeneous priors case, the insights provided by Lemma 1 (a) continue to hold if

the result is rephrased as follows. Suppose that, as an alternative to his private signal Φj , agent

36There are different formulations of asymptotic learning in social contexts. For the benchmark proposed in
this paper, asymptotic learning would require that, as the number of agents tends to infinity, the average of
the posteriors converge almost surely to some beliefs that place probability one on the true parameter value. If
a consensus occurs, then the average of the limiting beliefs trivially coincides with the consensus beliefs. As a
consequence, the surely convergence criterion used in our notion of correct limiting beliefs would imply the almost
surely convergence required for asymptotic learning.
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j places himself in agent i’s position and uses the directed link Ψij to update his beliefs about

the parameter. Then, the information about θ that agent j receives through this directed link

Ψij is less precise than the information that he would obtain using directly his signal Φj . The

insights provided by Lemma 1 (b) also continue to hold under the analogous restatement of the

result. Nevertheless, if two agents i and j begin with different priors and we simply ask about

the relation between P(Ψij) and P(Φj), then it could well be the case that P(Ψij) > P(Φj). This

is due to the role that the agents’ priors have on the power measures of sources and links.

What can we say about the power of a source Φj and/or of a directed link Ψij in the

particular cases where one, or both of them, allow for full information disclosure?37 To avoid

the formal difficulties implied in the heterogenous priors case, suppose that the agents begin

with some common priors p. Then, for any agent j ∈ N , it can be verified that P(Φj) =

H(p) −
∑

s1j∈S
φj(s

1
j )H(q

s1j
j ) so that P(Φj) ≤ H(p). Thus, P(Φj) = H(p) if and only if the

average entropy of agent j’s posteriors (obtained only from his source) vanishes. In other words,

P(Φj) = H(p) in the particular case in which j obtains full information about the parameter from

his source. In addition, for agent i to obtain full information about the parameter from a directed

link to agent j, it must be the case that (a) agent i obtains full information about the learning

process carried out by j using his source (i.e., P(Ψij) = P(Φj)) and that (b) agent j obtains

full information about the parameter from his source (i.e., P(Φj) = H(p)). Therefore, from the

result in Lemma 1, we observe that P(Ψij) ≤ H(p) for each i, j ∈ N , i.e., for the common priors

case, the entropy H(p) constitutes an upper bound on the degree of informativeness about θ

that any agent in the society can obtain, regardless of the network structure.38

4.2 Characterizing Limiting Beliefs and Consensus

For an agent i, we define the function Gi : Θ→ R as

Gi(θ) :=
∑
S

φi(s) log φθi (s). (7)

The value Gi(θ) is always negative and describes the (average) likelihood that the source Φi

assigns to θ being the true parameter value. Let Θi ⊆ Θ be the set specified as Θi :=

arg maxθ∈ΘGi(θ). To account for the information that an agent i receives from another agent

37This corresponds formally to completely separating Φj and/or Σij . In intuitive terms, it describes situations
where agent j learns from his source without any noise and/or he directly transmits to agent i directly the signals
that he observes, instead of the (noisy) messages.

38For the heterogenous priors case, an analogous upper bound on P(Ψij) that depends on both entropies H(pi)
and H(pj) can be derived. We do not provide the details since it only implies a more sophisticated mathematical
expression which, however, conveys no further intuitions.
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j, we define the function Fij : Θ→ R as

Fij(θ) :=
∑
M

ψ̂ij(mij) log ψ̂θij(mij). (8)

The value Fij(θ) is always negative and describes the (average) likelihood that the most infor-

mative directed path from agent i to agent j, γ̂ij , assigns to θ being the true parameter value.

For an agent i, we then specify the set Θ∗i ⊆ Θ as Θ∗i := arg maxθ∈Θ

{
Gi(θ) +

∑
j∈Ni Fij(θ)

}
.

We obtain the interesting feature that the various influences/biases imposed on an agent’s

beliefs by his source and by the opinions that he hears from others are additively aggregated to

determine his limiting beliefs.

Theorem 1. Consider a social network Ψ and suppose that Assumptions 1 and 3 hold. Then,

for any history hti ∈ Hi, agent i’s limiting beliefs satisfy:

(i) limt→∞ q
hti
i (θ) = 0 for each θ /∈ Θ∗i ;

(ii) if Θ∗i is singleton so that Θ∗i = {θ∗} for some θ∗ ∈ Θ, then limt→∞ q
hti
i (θ) = 1;

(iii) if Θ∗i is not singleton, then limt→∞ q
hti
i (θ) = pi(θ)/

∑
Θ∗i
pi(θ

′) for each θ ∈ Θ∗i .

From the expressions of the likelihood functions Gi and Fij given in (7) and (8), we observe

that priors play no role in the agents’ limiting beliefs. To fix ideas, consider, e.g., that two agents

i and j start with very different priors pi and pj about θ but use a common source Φ and receive

information from others through a common directed path γ̂. Then, the results of Theorem 1

imply that both agents achieve some common limiting beliefs. In this case, their priors will

determine the speed of convergence to such limiting beliefs. On the other hand, two agents

starting with common priors may end up either with different or common limiting beliefs. In

short, Theorem 1 implies that the slope of the trajectory of an agent i’s posteriors to his limiting

beliefs depends on his priors pi, on his information source Φi, and on all the paths γ̂ij ∈ Γij [Ψ],

for each j ∈ Ni. Nevertheless, his limiting beliefs do not depend on his priors. Even if agent i

receives no information from others and his priors put a large weight on some value θ, he may

end up with some limiting beliefs that put probability one to some other value θ′ 6= θ. This will

happen if his source Φi biases him sufficiently towards θ′ in his private learning.

Consider now the case where no agent receives any information whatsoever from any other

agent. In particular, this situation is formally obtained if each message protocol Σij is such that

messages do not depend on observed signals, i.e., σsij(m) = σij(m) for each s ∈ S.39 If this is

the case, then it follows from the expression in (4) that πsγij (m) = πγij (m) for any directed path

39Following the terminology of sender-receiver games, this case corresponds to a pooling message protocol
Σij . Notice that this extreme case can be alternatively obtained if we simply exclude the possibility of network
connections.
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γij so that ψij [γij ](m) = πγij (m). As a consequence, Fij(θ) = −H(ψ̂ij) for each pair of different

agents in the society. Since each Fij does not depend on θ in this extreme case, we have Θi = Θ∗i

for each agent i ∈ N . In this case, using Theorem 1, we obtain the intuitive insight that an

agent i’s limiting beliefs are governed only by his source Φi. We thus naturally interpret each

Θi as the set of parameter values that agent i favors due only to his private learning, without

communication, and each Θ∗i as the set of values that he favors using both his source and the

information that he receives from others. Then, to explore the achievement of a consensus, we

would like to study the conditions on the network structure under which some agents are able to

influence others’ opinions in a way such that all of them end up with the same limiting beliefs.

Specifically, we wish to identify the features of the network and its weights which, starting from

a reference situation Θi 6= Θj , induce Θ∗i = Θ∗j , with the additional requirement that Θ∗j = Θj .
40

Definition 7. Given a connected social network Ψ, and two distinct agents i, j ∈ N such that

Θi 6= Θj , we say that agent j influences agent i if Θ∗i = Θ∗j = Θj .

In the definition above, for an agent to influence another, we require that he must not be in

turn influenced by other agents. Also, from the results of Theorem 1, we note that if the sets

Θ∗i and Θ∗j satisfying Θ∗i = Θ∗j are not singleton and agents i and j begin with different priors,

then their limiting beliefs are indeed different. In this case, agents i and j do agree on the set of

parameter values that have positive probability of occurrence. However, each Θ∗i is generically

singleton because non-singleton sets Θ∗i are not robust to small perturbations of the network.41

Consider now the extreme case in which all message protocols are completely separating so

that all agents reveal with full precision their signals to their neighbors. Suppose, without loss

of generality, that each message protocol Σij is specified as σslij (ml) = 1 for each l ∈ {1, . . . , L}.

Then, by using the expression in (4), we obtain that, for any directed path γij in the network,

πslγij (ml) = 1 for each l ∈ {1, . . . , L}. As a consequence, Fij = Gj for each pair of agents i, j ∈ N

such that i has a directed path to j. Then, using the result in Theorem 1, we see that an agent

i’s limiting beliefs favor the set of parameters arg maxθ∈Θ

{
Gi(θ) +

∑
j∈Ni Gj(θ)

}
. In short, in

this case where information flows through links without any decay, how agent j influences agent

i through any directed path γij in the network depends only on the functions Gi and Gj or,

in other words, on the qualities of the sources Φi and Φj . Notice, though, that the network

architecture continues to be crucial to determine how a particular agent might be influenced by

40The interpretation is that the agents j are able to influence agents i’s opinions so that all them put positive
probability in the long-run to the same parameter values that agents j considered with positive probability based
solely on their sources.

41The set of networks for which some Θ∗i is not singleton has Lebesgue measure zero in the set of all possible
networks.
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others.

The following example illustrates (a) how limiting beliefs are obtained for the case without

communication and (b) how an agent can influence the evolution of others’ beliefs in a way such

that a consensus is finally achieved in the society.

Example 1. Consider a set of n = 4 agents who care about two possible parameter values, i.e.,

Θ = {θ1, θ2}. The agents are connected through a social network Ψ = {Ψ13,Ψ21,Ψ24,Ψ32,Ψ43},

which is depicted in Figure 1. The agents begin with the (common) priors p(θ1) = p(θ2) = 1/2,

so that H(p) = − log(1/2). The agents’ private signals are specified as: (agent 1) φθ11 (s1) = 1/6

and φθ21 (s1) = 1/2; (agent 2) φθ12 (s1) = 1/3 and φθ22 (s1) = 2/3; (agent 3) φθ13 (s1) = 2/5 and

φθ23 (s1) = 9/10; (agent 4) φθ14 (s1) = 2/3 and φθ24 (s1) = 1/3. With this information, we can

compute: (agent 1) G1(θ1) = −0.7188 and G1(θ2) = −0.6931 so that Θ1 = {θ2}; (agent 2)

G2(θ1) = −0.752 and G2(θ2) = −0.752 so that Θ2 = {θ1, θ2}; (agent 3) G3(θ1) = −0.7744 and

G3(θ2) = −0.8744 so that Θ3 = {θ1}; (agent 4) G4(θ1) = −0.752 and G4(θ2) = −0.752 so that

Θ4 = {θ1, θ2}. Therefore, when the agents use only their sources, there is some discrepancy in

their limiting beliefs. In particular, agents 2 and 4 end up with their initial priors, agent 1 favors

the parameter value θ2, and agent 3 favors the parameter value θ1.

1

2

4

3

Ψ13Ψ21

Ψ24

Ψ32

Ψ43

Figure 1

To describe the links of the directed network, we specify the corresponding message protocols

as: (link 13) σs113(m1) = 1 and σs213(m1) = 0; (link 21) σs121(m1) = 4/5 and σs221(m1) = 1/5; (link

24) σs124(m1) = 1/4 and σs224(m1) = 0; (link 32) σs132(m1) = 1/3 and σs232(m1) = 2/3; (link 43)

σs143(m1) = 9/10 and σs243(m1) = 1/10. With this information, we can obtain the associated

distributions ψ̂θij ∈ ∆({m1,m2}), for θ ∈ {θ1, θ2}. Observe that the network in Figure 1 is

connected so that each agent can listen to the opinions of each other agent through some directed

path. Also, some agents are connected through several paths. In particular, agent 2 can listen

to agent 3 through the paths γ23 = (Ψ21,Ψ13) and γ′23 = (Ψ24,Ψ43). By computing the power

of each path, we pick the paths which transmit the highest amount of information.
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For the directed links, we obtain: (link 13) F13(θ1) = −0.7744 and F13(θ2) = −0.8744; (link

21) F21(θ1) = −0.6956 and F21(θ2) = −0.6931; (link 24) F24(θ1) = −0.3835 and F24(θ2) =

−0.3867; (link 32) F32(θ1) = −0.6993 and F32(θ2) = −0.6993; (link 43) F43(θ1) = −0.7448 and

F43(θ2) = −0.7747.

For the directed paths which transmit the highest amount of information, we obtain: (path

12) F12(θ1) = −0.6993 and F12(θ2) = −0.6993; (path 14) F14(θ1) = −0.662 and F14(θ2) =

−0.662; (path 23) F23(θ1) = −0.7221 and F23(θ2) = −0.7299; (path 31) F31(θ1) = −0.6932 and

F31(θ2) = −0.6931; (path 34) F34(θ1) = −0.662 and F34(θ2) = −0.662; (path 41) F41(θ1) =

−0.6931 and F41(θ2) = −0.6931; (path 42) F42(θ1) = −0.6971 and F42(θ2) = −0.6971.

We observe that, for each agent i 6= 3, the value of Fi3(θ1) is higher than the value of

Fi3(θ2). This indicates that, through communication, agents place a relatively high intensity on

the parameter value that agent 3 favors in the case without communication. Then, we analyze

whether agent 3 can be influential in this society. This turns out to be the case: by computing

the corresponding values of Gi(θ) +
∑

j 6=i Fij(θ), for each i = 1, . . . , 4 and each θ ∈ {θ1, θ2},

using the values above, we obtain Θ∗i = {θ1} for each i = 1, . . . , 4. Thus, the society achieves a

consensus in which each agent believes in the long-run with probability one that θ1 is the true

parameter value.

A complementary way to study how influential are some agents and the achievement of a

consensus would naturally involve to use the power of the paths. We next provide two necessary

and sufficient conditions, in terms of the power of the paths of the network, under which an agent

is able to influence another. For an agent j to influence another agent i, it would be natural, on

the one hand, to require that the informativeness of the (most informative) path from i to j be

sufficiently high. On the other hand, it would be also natural to require that the informativeness

of the (most informative) path from agent j to any other agent in the society be sufficiently low

in order to prevent j from being influenced. This turns out to be the case, and such conditions

are stated formally in Theorem 2 below. Other intuitive message of Theorem 2 is that some j is

more likely to influence another agent i when agent j’s private learning places high intensity on

some parameter values. This can be interpreted as agent j being very convinced of his opinion

about the true parameter values from his private learning. Such an agent j can be viewed as a

“self-confident” agent.

Before stating Theorem 2, we need to introduce an additional entropy-related measure. For

two distinct agents i, j ∈ N , let

Q(pi, pj) := −
∑
Θ

pi(θ) log pi(θ)
∑
M

ψ̂θij(m)

[∑
θ′ ψ̂

θ′
ij (m)pj(θ

′)∑
θ′ ψ̂

θ′
ij (m)pi(θ′)

]
.
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The measure Q(pi, pj) describes how far are agent i’s priors with respect to the uniform case,

compared to the discrepancy of j’s priors relative to uniformity. For the particular case where

agents i and j share common priors, pi = pj = p, it can be easily verified that Q(p, p) = H(p).

Also, from the expression above, it can be checked that Q(pi, pj) increases with H(pi), for any

given priors pj .

Theorem 2. Consider a connected social network Ψ and two different agents i, j ∈ N such

that Θi 6= Θj. Suppose that Assumptions 2 and 3 hold, then agent j influences agent i if and

only if Ψ satisfies the following conditions:

(i) for agents i and j:

P(γ̂ij) > [Gi(θi)−Gi(θj)] + max
θ/∈Θj

∑
h∈Ni

[Fih(θ)− Fih(θj)] +Q(pi, pj)− Eψ̂ij
[
H(q

m1
ij

i [γ̂ij ])
]
, (7a)

for any θi ∈ Θi and any θj ∈ Θj.

(ii) for agent j (with respect to the rest of the society):

max
k∈Nj

{
P(γ̂jk) + E

ψ̂jk

[
H(q

m1
jk

j [γ̂jk])
]}

< Gj(θj) +
∑
h∈Nj

Fjh(θj)−max
θ/∈Θj

[
Gj(θ) +

∑
h∈Nj

Fjh(θ)
]

+Q(pj , pk),
(7b)

for any θj ∈ Θj.

Condition (i) of Theorem 2 identifies a lower bound on the informativeness levels of the (most

informative) directed path from agent i to agent j under which j is able to affect i’s beliefs in

a way such that i ends up favoring the same parameter values that j favors in the absence of

communication. On the other hand, condition (ii) identifies an upper bound on the level of

informativeness of the (most informative) directed path from agent j to any other agent in the

society, which characterizes the situation where j continues to believe in the long-run that his

most-favored parameter values in the absence of communication, Θj , are also the most likely

ones after listening to others’ opinions.

From inequality (7a) above, we observe that the required lower bound on P(γ̂ij) increases

with the difference Gi(θi)−Gi(θj). Intuitively, it is easer for us to influence some agent when the

intensity that he puts on the parameter values that he considers the most likely ones does not

differ much from the intensity that he puts on the values that we consider to be the most likely

ones. Inequality (7a) also states that the required lower bound on P(γ̂ij) decreases with each

Fih(θj), h ∈ Ni, that is, it is easer for us to influence some agent when the information that he re-

ceives through communication place a high intensity on the parameters value that we consider to

be the most likely ones. Furthermore, such a lower bound increases with maxθ/∈Θj

∑
h∈Ni Fih(θ),
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which can be interpreted as a measure of the highest intensity that the information received by

agent i from the rest of the society places on a parameter value other than the ones favored

by agent j. Then, we obtain that it is easer for agent j to influence agent i when i’s message

protocols do not place a large intensity on parameter values different from those in Θj . Finally,

inequality (7a) also states that the required lower bound on P(γ̂ij) increases with Q(pi, pj) and

decreases with the average entropy E
ψ̂ij

[H(q
m1
ij

i [γ̂ij ])]. Therefore, for agent j to influence agent

i, we need lower values of P(γ̂ij) when agent i’s priors display little uncertainty ex-ante42 and/or

when agent i’s posteriors, based solely on the information that he receives from agent j, have in

average high uncertainty.43

On the other hand, from inequality (7b), we observe that high values of the informativeness

of agent j’s path to another agent k in the society are compatible with j not being influenced

by k when: (a) j’s source and/or the opinions that he receives from k put a high intensity on

the parameter values that he considers the most likely ones without communication (i.e., high

values of Gj(θj) and/or of Fjh(θj)), (b) j’s source and/or the opinions that he receives from

other agents h ∈ Ni do not place a high intensity on parameter values different from the ones

that he favors without communication (i.e., low values of maxθ/∈Θj{Gj(θ) +
∑

h∈Nj Fjk(θ)}),

(c) j’s priors are very uncertain ex-ante (i.e., high values of Q(pj , pk)),
44 and (d) the ex-ante

uncertainty in average of j’s posteriors, conditioned on the messages that he receives from k, is

low (i.e., low values of E
ψ̂ij

[H(q
m1
ij

i [γ̂ij ])]).

Example 2. Consider again the social network analyzed in Example 1. Figure 2 depicts the

power of each directed link in the network. The power measures P(Ψij) below are computed using

the set of primitives described in Example 1. Recall that, in the case without communication,

agents 2, 3, and 4 favor parameter value θ1 but, unlike agent 3, agents 2 and 4 consider that

parameter value θ2 has also some positive probability of occurrence. Based only on their sources,

the discrepancy of opinions is relatively higher between agents 1 and 3. Agent 1 favors θ2 with

probability one while agent 3 favors θ1 with probability one. The result obtained in Example 1

that agent 3 influences the rest of the society so as to achieve a consensus is not surprising now

42It can be easily verified that, for any given priors pj , lower values of Q(pi, pj) are associated with agent i’s
priors which are close to the uniform case pi(θ) = 1/L for each θ ∈ Θ.

43Higher values of Eψ̂ij
[H(q

m1
ij

i [γ̂ij ])] are associated with posteriors which put large probabilities on a few

parameter values.
44Since Q(pj , pk) increases with H(pj), the message here is that it is easer for an agent to influence others when

he begins with priors that put relatively large probability weights on a small number of parameter values. A
natural interpretation, compared to priors more close to the uniform case, is that the agent begins with “strong
opinions” about which parameter values are most likely. If, in addition, the network does not allow this agent
to hear other agents who have strong beliefs in favor of different parameter values, then we would obtain the
interpretation that this is a “stubborn agent,” hardly influenced by others in the social group.
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if we note the weights described in Figure 2.
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2
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0.14840.021

0.0081

0.0062

0.0882

Figure 2

We observe that the intensity with which agent 1 listens to agent 3’s opinions is the highest in the

society (0.1484). Also, agent 3 listens to the others’ opinions exclusively through his link with

agent 2, and the power of this link is the lowest in the society (0.0062). In addition, we obtain

P(γ̂23) = 0.0474 while P(Ψ21) = 0.021. In other words, through agent 1, agent 2 pays more

attention to the opinions of agent 3 than to the opinions of agent 1 himself. On the other hand,

using the result in Lemma 1, we know that P(γ̂41) < 0.021 so that, given that P(Ψ43) = 0.0882,

we observe that agent 4 also pays more attention to the opinions of agent 3 than to the opinions

of agent 1. In short, using the power measure, we observe that agent 3 is a good candidate to

influence the opinions of the rest of the society. Clearly, he is the agent in the best position,

according to the architecture of the directed links and to their weights, to do so.

Then, we examine whether condition (7a) of Theorem 2 holds for for the directed link

Ψ13. Recall from Example 1 that H(p) = − log(1/2) = 0.6931 Also, from the computations of

Example 1, we observe that

G1(θ2)−G1(θ1) = 0.0257

and

F12(θ2)− F12(θ1) = 0, F13(θ2)− F13(θ1) = −0.1, and F14(θ2)− F14(θ1) = 0.

Thus, to verify whether whether condition (7a) holds for the directed link Ψ13, we only need to

compute the expected entropy Eψ13 [H(qm13)]. Using the message protocols specified in Example

1, we compute: qm1
13 (θ1) = 4/13 and qm2

13 (θ1) = 6/7. With these posteriors, we easily obtain

Eψ13 [H(qm13)] = 0.5447. Then, according to condition (7a), for agent 3 to influence agent 1, we

need that the intensity of the directed link Ψ13 be above the bound

0.0257− 0.1 + 0.6931− 0.5447 = 0.0471.

This intensity is clearly exceeded in our example since we have P(Ψ13) = 0.1484.
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Now, we turn to examine whether condition (7b) holds for agent 3 so that he is not influenced

by any of the three other agents. First, from the computations of Example 1, we observe that

G3(θ1) +
∑
k 6=3

F3k(θ1)−
[
G3(θ2) +

∑
k 6=3

F3k(θ2)
]

+H(p) = 0.7932. (9)

Second, we can easily compute

E
ψ̂31

[H(qm31[γ̂31])] = 0.6909, Eψ32 [H(qm32)] = 0.6869, and E
ψ̂34

[H(qm34[γ̂34])] = 0.6002.

We, therefore, obtain

P(Ψ32) + Eψ32 [H(qm32)] = 0.0062 + 0.6869 = 0.6932.

Furthermore, by using the result in Lemma 1, we know that

P(γ̂31) + E
ψ̂31

[H(qm31[γ̂31])] < 0.021 + 0.6909 = 0.7119, and

P(γ̂34) + E
ψ̂34

[H(qm34[γ̂34])] < 0.0081 + 0.6002 = 0.6083.

Since maxk 6=3

{
P(γ̂3k) + E

ψ̂3k
[H(qm3k[γ̂3k])]

}
is less than 0.7119, which exceeds not the required

value 0.7932, identified in (9) above, we obtain that condition (7b) holds for agent 3.

In this example, one can analogously analyze the conditions in Theorem 2 for the most

informative paths γ̂23 and γ̂43 to conclude that these conditions are satisfied in a way such that

agent 3 influences agents 2 and 4 as well, and a consensus is achieved.

An obvious implication of Theorem 2 is the following sufficient condition that guarantees

the achievement of a consensus in the society.

Corollary 1. Consider a connected social network Ψ. A consensus is attained in the society if

there exists a set of agents N ⊂ N such that (i) for each j ∈ N , we have Θj = {θ∗} for some

θ∗ ∈ Θ, and (ii) for each i ∈ N \ N there is some agent j ∈ N such that agent j influences

agent i.

Following the related literature, if a set of agents N as the one described in Corollary 1

exists, then we refer to it as a set of prominent agents.

Some insights about the role of network centrality on consensus emerge straightforwardly

by combining our results on the weights of paths required for an agent to be able to influence

others, Theorem 2, with our previous results on decay provided by Lemma 1. The message that

more central agents can be especially influential is well-established in the literature on influence

in networks. Our model delivers this idea too as it provides precise conditions, in terms of our

entropy-based measures, for an agent to critically influence others. Since the informativeness of
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messages decreases as they pass from one agent to another, these conditions depend crucially

on how central such an agent is.

More specifically, for an agent to be a prominent agent in our model, it helps that he enjoys

high centrality following the sort of criteria considered by the measures of closeness centrality

or information centrality.45 Under a number of different specifications, this class of centrality

measures tracks how close a given agent is to any other agent. Within this class, a particular

subset of centrality measures that appears naturally well suited to our model is that of decay

centrality measures. The general idea here is to measure the proximity between a given agent

and any other agent weighted by the decay of the path that connects them. The particular notion

of decay would depend on the context analyzed. In fact, our model provides some interesting

entropy-based tools that allow us to readily formalize this idea in our benchmark. In addition,

since networks are directed in this benchmark, we wish that our decay centrality measure also

captures the idea that an agent is central when he pays little attention to the other agents.

Specifically, let

Cj(Ψ) =
∑

{i∈N : γ̂ij∈Γij [Ψ]}

P(γ̂ij) −
∑

{h∈N : γ̂jh∈Γjh[Ψ]}
P(γ̂jh) (10)

be the decay centrality measure of agent j in the social network Ψ. The measure Cj(Ψ) computes,

in terms of the quality of the information that flows through the (most informative) directed

paths that connects them, how close is any agent i to agent j. Note that this centrality measure

depends crucially on the decay along each directed path to agent j since each P(γ̂ij) is negatively

related to the decay accumulated along γ̂ij . In addition, Cj(Ψ) substracts the distance, in terms

of the power of the corresponding link, of agent j to any other agent h.46

Intuitively, using the decay centrality measure Cj(Ψ) specified in (10) above, an agent j

enjoys high centrality if he is accessed by many agents through relatively short paths with very

informative message protocols and, at the same time, he listens to others only through long paths

with low informative message protocols. It can be easily verified that, for any given configuration

of sources and message protocols, Cj(Ψ) is maximized when agent j is the central agent in a

center-directed star network. Without loss of generality, a center-directed star network has the

form Ψs = {Ψj1 : j ∈ N \ {1}}, where agent 1 has been chosen to have the central position.

In Proposition 2, we consider a center-directed star network and study the conditions under

which the central agent can become prominent and, at the same time, preclude the attainment

45The information centrality measure was introduced by Stephenson and Zelen (1989) with the motivation that
information flows through a social network. This measure is specified as the harmonic average of the distance
between a given agent and any other agent.

46A typical formulation of a decay centrality measure for non-directed social networks would only consider, in
our benchmark, the positive component

∑
{i∈N : γ̂ij∈Γij [Ψ]} P(γ̂ij).
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of correct limiting beliefs.

In organizations or social groups, the natural interpretation of a prominent central agent

would then be that of some agent j with good communication skills for general audiences (so

that P(γ̂ij) be relatively high for as many agents i as possible) and with a position that allows

him to speak directly to as many other agents as possible (so that decay does not affect crucially

the informativeness level of the information that he is transmitting). In other words, other

agents in the organization should be able to hear this agent’s opinions through “good quality

channels,” and as directly as possible, without the need of many intermediaries to receive his

messages. Also, it helps for an agent to be prominent that he has access to others’ opinions

mainly through “bad quality channels” and/or through long paths of directed links (so that

P(γ̂jh) be relatively low for as many agents h as possible).

4.3 Correct Limiting Beliefs and Influence of Prominent Agents

Suppose that a consensus is achieved because a group of prominent agents is able, through the

paths of the network, to influence any other agent in the society. However, it could well be the

case that the limiting beliefs of these prominent agents differ from the limiting beliefs associated

with the aggregation of all the private sources of information in the society. In this case, the

intuition is that the prominent agents are able to perform a “large-scale manipulation” by using

the biases attached to their sources, their positions in the network, and/or the weights of the

links that connects them to other agents. The next proposition provides a sufficient condition

on the informativeness levels of the links of the network under which correct limiting beliefs are

attained in the society.

Proposition 1. Consider a connected social network Ψ and suppose that a consensus is achieved

in the society in a way such that, for some θ∗ ∈ Θ, we have Θ∗i = {θ∗} for each i ∈ N . If the

following condition ∑
i∈N

∑
j∈Ni

[
Fij(θ

∗)− Fij(θ)
]
< 0,

is satisfied for each θ ∈ Θ \ {θ∗}, then the social network Ψ attains correct limiting beliefs.

The sufficient condition identified in Proposition 1 is intuitive. Suppose that the aggregation

of the pieces of information obtained from the sources of all the agents leads one to believe in

the long-run that a given parameter value θ∗ is the true one. Then, the condition above imposes

some restrictions on the influence of prominent agents. It requires that there is no agent whose

influence on others be such that some agents’ limiting posteriors favor alternative parameter

values θ ∈ Θ \ {θ∗}. Thus, we obtain that the attainment of correct beliefs is facilitated if the
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influence of the prominent agents is not too high.

The message conveyed by the sufficient condition of Proposition 1 above is reminiscent of the

main results obtained by Golub and Jackson (2010) in their work without Bayesian updating

(Propositions 2 and 3). Although they use a notion of correct beliefs that differs slightly from

ours,47 correctness of beliefs requires in their model that the influence of prominent agents vanish

as the size of the society grows. In our setting, as well as in theirs, a disproportionate popularity

by some agent(s) could turn into an obstacle to achieve correct limiting beliefs.

However, the fact that the condition stated in Proposition 1 is only sufficient is illustrated

in the following example. In Example 3 below, the influence of a prominent agent is relatively

high, which leads to a consensus, and yet correct limiting beliefs are obtained.

Example 3. Consider again the social network described in Example 1. Recall that this soci-

ety achieves a consensus in which all the agents’ beliefs converge to a distribution that places

probability one on the parameter value θ1. This consensus was propitiated by the fact that

agent 3 was able to influence the rest of agents in the society. Using the computations of the

functions Fij provided in Example 1, it is easy to verify that

4∑
i=1

∑
j 6=i

[Fij(θ1)− Fij(θ2)] = [−0.7744 + 0.8744] + [−0.6956 + 0.6931]

+ [−0.7221 + 0.7299] + [−0.3835 + 0.3867] + [−0.6932 + 0.6931]

= 0.1305 > 0,

so that the sufficient condition of Proposition 1 is not satisfied. Nevertheless, using Theorem

1, we can still check directly whether the consensus beliefs coincide with the limiting beliefs of

the external observer. Note that, from the result in Theorem 1, the parameter values that are

favored by the external observer are those in the set arg maxΘ
∑

i∈N Gi(θ). Then, using the

computations of the functions Gi provided in Example 1, we obtain
∑4

i=1Gi(θ1) = −2.9972

and
∑4

i=1Gi(θ1) = −3.0719 so that, for our social network, we have limt→∞ q
ht

ob(θ1) = 1. Thus,

although the sufficient condition in Proposition 1 is not satisfied, the influence of agent 3 does

not interfere with the limiting beliefs that are obtained by aggregating the external sources, and

correct limiting beliefs are attained in this social network.

Under which conditions will then prominent agents be able to manipulate beliefs and propa-

gate misinformation in the society? To provide some answers to this question, we next analyze

a particular network structure in which, compared to any other possible network architecture, a

47Their definition of belief correctness also requires that some external observer aggregates the pieces of infor-
mation initially held by the agents.
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given agent is in the best position to influence anyone else. By combining the results of Lemma

1 and of Theorem 2, it follows that this reference network is the center-directed star network

Ψs = {Ψj1 : j ∈ N \ {1}}, where (without loss of generality) agent 1 has the central position.

In this network the decay centrality measure C1(Ψ) proposed in (10) is maximized for any given

configuration of sources and message protocols. Notice that, while the central agent is listened

by each other agent through a single directed link, he does not pay attention to anyone. In

addition, any peripheral agent only receives messages from the central agent. Provided that a

consensus is attained, the following proposition shows that, if the size of the society is suffi-

ciently large, then the central agent manipulates anyone else in a way that precludes the correct

aggregation of disperse information.

Proposition 2. Consider the center-directed star network Ψs = {Ψj1 : j ∈ N \ {1}}. Suppose

that Assumptions 1 and 3 hold and that a consensus is achieved in a way such that agent 1

influences any other agent’s limiting beliefs to put probability one on some parameter value

θ∗ ∈ Θ. Then, there is some finite size of the society n∗ ∈ {1, 2, . . . } such that correct limiting

beliefs are precluded for each n ≥ n∗.

The following example illustrates the result of Proposition 2 above by using some of the

entropy-based measures proposed in this paper.

Example 4. Suppose that Θ = {θ1, θ2} and consider a set of n = 5 agents who are connected

through the center-directed star network Ψs = {Ψ21,Ψ31,Ψ42,Ψ51}.

1

2 3

4 5

0.1182 0.1182

0.1182
0.1182

Figure 3

The agents begin with the (common) priors p(θ1) = p(θ2) = 1/2 and their private signals are

specified as: (agent 1) φθ11 (s1) = 1/2 and φθ21 (s1) = 1/12; (each agent j 6= 1) φθ1(s1) = 1/6 and

φθ2(s1) = 1/2. Then, it can be verified that G1(θ1)−G1(θ2) = 0.0932 > 0 and G(θ2)−G1(θ1) =

0.0256 > 0 so that, by using the results of Theorem 1, we know that, without communication

among the agents, the central agent would favor parameter value θ1 while any of the peripheral
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agents would favor parameter value θ2. Now, suppose that the communication from the central

to each peripheral agent is described by a common message protocol σ, specified as σsl(ml) = 1

for each l ∈ {1, 2}. Note that this message protocol is completely separating so that there is

no decay in the transmission of information from the center of the star to any agent in the

periphery. The power of the directed links are depicted in Figure 3.

In this case, we obtain that Fj1(θ) = G1(θ) for each j 6= 1 and each θ ∈ Θ. Therefore, we

have

Fj1(θ1) +G(θ1)− [Fj1(θ2) +G(θ2)] = 0.0932− 0.0256 > 0,

so that each peripheral agent is influenced by agent 1, and their limiting beliefs put probability

one on θ1 being the true parameter value. However, by aggregating the information sources

available to all agents, we obtain

G1(θ2) + 4 ·G(θ2)− [G1(θ1) + 4 ·G(θ1)] = −0.0932 + 4 · 0.0256 = 0.0092 > 0,

so that correct limiting beliefs put probability one on θ2 being the truth. In this example, the

power of the source of each peripheral agent j 6= 1 is P(Φ) = 0.0647. Not surprisingly, since

P(Ψj1) = P(Φ1) = 0.1182 for each j 6= 1, we observe that the quality of the communication from

the central agent to any peripheral agent is higher than the quality of the information that the

peripheral agents receive from their sources.

Since limiting beliefs are additively determined using the influences that the agents receive

from their sources and from communication with others, this model easily accommodates phe-

nomena of diffusion of “extreme opinions.”48 Given this feature, an interesting insight that

arises from Proposition 2 is that a central and prominent agent is more likely to induce incorrect

consensus beliefs as the size of the society grows. In other words, if the available communication

technology is sufficiently good so that the quality of the information from central-prominent

agents to other peripheral agents does not diminish as the society grows, then manipulation

follows more easily for large networked societies.49

5 Concluding Comments

Using Bayesian updating rules, this paper has developed a mathematically tractable model of

beliefs evolution under opinion influence to which non-Bayesian models can be compared. The

48This feature contrast sharply with the insights of the DeGroot’s model, wherein extreme opinions are smoothed
down as time evolves.

49Although Proposition 2 provides formally this insight only for the specific case of a star network, given the
logic behind the result, the message that it conveys is robust under more general network structures in which
prominent agents enjoy positions with high centrality.

33



assumptions on the agents’ informational capabilities, the focus on first-order beliefs, and the

notion of belief correctness are more appealing when one considers societies large enough. For

small societies, the use of a belief correctness notion based on conditioning posteriors on a given

parameter value, together with allowing agents to compute higher-order beliefs, would deliver

the message that they always learn the truth because both signals and received messages are

independent over time in our model. This implication would follow rather directly from the

main result of Cripps, Ely, Mailath, and Samuelson (2008). Nevertheless, for the approach

usually pursued in the learning literature with higher-order beliefs, recent research (e.g., Parikh

and Krasucki, 1990; Heifetz, 1996; Koessler, 2001; Steiner and Stewart, 2011) shows that the

presence of communication among the agents may in some cases preclude common learning of

the parameter. In particular, Cripps, Ely, Mailath, and Samuelson (2013) show that common

learning is precluded when the messages that the agents receive are correlated across time.

Analyzing consensus and the evolution of correct higher-order beliefs for small societies when

messages follow time dependence patterns remains an interesting open question.

Finally, an obvious interesting extension of the model would be that of endogenizing the

listening behavior. To follow this approach, more structure should be added to the model so as

to consider that the agents pursue the maximization of a payoff that depends on the unknown

parameter. Then, by characterizing listening structures that are “stable,” one could obtain

some insights into the formation of communication networks in a dynamic framework of belief

evolution.
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Appendix

Proof of Lemma 1. (a) Consider a social network Ψ. Take two different agents i, j ∈ N and a

directed link Ψij ∈ Ψ from agent i to agent j. Suppose that the agents i and j to begin with

some common priors p. Using the definition of power of a directed link in (3), we have

P(Ψij) =
∑
M

ψij(m)D
(
qmi || p

)
=
∑
M

ψij(m)
∑
Θ

qmi (θ) log
qmi (θ)

p(θ)

=
∑
M

ψij(m)
∑
Θ

ψθij(m)p(θ)

ψij(m)
log

ψθij(m)

ψij(m)

=
∑
Θ

∑
M

p(θ)
∑
S

σsij(m)φθj(s) log

∑
S σ

s′
ij(m)φθj(s

′)∑
S σ

s′
ij(m)φj(s′)

.

(11)

Now, by applying, for each given θ ∈ Θ and each given m ∈ M , the log-sum inequality to the

expression in (11) above, we obtain

P(Ψij) ≤
∑
Θ

∑
M

p(θ)
∑
S

σsij(m)φθj(s) log
φθj(s)

φj(s)
. (12)

On the other hand, using the definition of power of a source in (2), we have

P(Φj) =
∑
S

φj(s)D
(
qsj || p

)
=
∑
S

φj(s)
∑
Θ

qsj (θ) log
qsj (θ)

p(θ)

=
∑
S

φj(s)
∑
Θ

φθj(s)p(θ)

φj(s)
log

φθj(s)

φj(s)

=
∑
Θ

∑
S

p(θ)φθj(s) log
φθj(s)

φj(s)
.

(13)

By combining the inequality in (12) with the expression in (13) above, we obtain

P(Ψij) ≤
∑
Θ

∑
M

p(θ)
∑
S

σsij(m)φθj(s) log
φθj(s)

φj(s)

=
∑
Θ

∑
S

p(θ)φθj(s) log
φθj(s)

φj(s)

[∑
M

σsij(m)
]

=
∑
Θ

∑
S

p(θ)φθj(s) log
φθj(s)

φj(s)
= P(Φj),

as stated.
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Moreover, by combining the expressions in equations (11) and (13), we obtain

P(Ψij) = P(Φj) +R(Σij), (14)

where

R(Σij) :=
∑
Θ

p(θ)
∑
M

∑
S

σsij(m)φθj(s) log
φj(s)

∑
S σ

s′
ij(m)φθj(s

′)

φθj(s)
∑

S σ
s′
ij(m)φj(s′)

.

Since
∑

S σ
s′
ij(m)φθj(s

′) gives us the probability of agent i receiving message m from agent j

conditional on the parameter value being θ while
∑

S σ
s′
ij(m)φj(s

′) gives the corresponding un-

conditional probability, it follows that R(Σij) ≤ 0 for any message protocol R(Σij). Now, note

that the message protocol Σij , associated with the directed link Ψij , allows agent i to learn fully

the signal that agent j observes if and only if Σij completely separates all the signal realizations

s ∈ S available to agent j. Without loss of generality, Σij completely separates all the signal

realizations in S if and only if σslij (ml) = 1 for each l ∈ {1, . . . , L}. In this case, for each θ ∈ Θ,

we obtain

∑
M

∑
S

σsij(m)φθj(s) log
φj(s)

∑
S σ

s′
ij(m)φθj(s

′)

φθj(s)
∑

S σ
s′
ij(m)φj(s′)

=

L∑
l=1

φθj(sl) log
φj(sl)φ

θ
j(sl)

φθj(sl)φj(sl)
= 0

⇔ R(Σij) = 0.

Therefore, from the expression in (14), we obtain that the message protocol Σij allows agent i

to fully learn about the signal observed by agent j if and only if P(Ψij) = P(Φj).

(b) The proof of part (b) uses exactly the same arguments given above for part (a). The only

difference is that the role played in (a) by the source Φj is now played by the directed link

Ψkj . All the formal expressions required would replicate the previous ones used in (a) upon

adaptation to the appropriate formulae. Therefore, we forego a formal statement.

Proof of Theorem 1. Consider a given social network Ψ and take an agent i ∈ N . For a history

hti ∈ Hi, let α(s;hti) be the number of periods in which agent i has observed signal s up to period

t and let βj(m;hti) be the number of periods in which agent i has received message m from agent

j (through the directed path which transmits the highest amount of information from j to i) up

to period t. Consider a history hti ∈ Hi and a given θ ∈ Θ. From the expression derived in (6),

we obtain

q
hti
i (θ) =

1 +
∑
θ′ 6=θ

pi(θ
′)

pi(θ)

∏
s∈S

(
φθ
′
i (s)

φθi (s)

)α(s;hti)/t ∏
j∈Ni

∏
m∈M

(
ψ̂θ
′
ij (m)

ψ̂θij(m)

)βj(m;hti)/t
t

−1

.
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Since observed frequencies approximate distributions, i.e., lim
t→∞

α(s;hti)/t = φi(s) and

lim
t→∞

βj(m;hti)/t = ψ̂ij(m), we have

lim
t→∞

q
hti
i (θ) =

1 +
∑
θ′ 6=θ

pi(θ
′)

pi(θ)
lim
t→∞

∏
s∈S

(
φθ
′
i (s)

φθi (s)

)φi(s) ∏
j∈Ni

∏
m∈M

(
ψ̂θ
′
ij (m)

ψ̂θij(m)

)ψ̂ij(m)
t

−1

.

Therefore, studying the converge of q
hti
i (θ) reduces to studying whether each term, for θ′ 6= θ,

∏
s∈S

(
φθ
′
i (s)

φθi (s)

)φi(s) ∏
j∈Ni

∏
m∈M

(
ψ̂θ
′
ij (m)

ψ̂θij(m)

)ψ̂ij(m)

exceeds or not one. By taking logs, this is equivalent to studying whether, for each θ′ 6= θ, the

expression ∑
s∈S

φi(s) log
φθ
′
i (s)

φθi (s)
+
∑
j∈Ni

∑
m∈M

ψ̂ij(m) log
ψ̂θ
′
ij (m)

ψ̂θij(m)

exceeds or not zero. Then, using the definitions of Gi and of Fij in (7) and in (8), respectively,

we obtain that:

(i) limt→∞ q
hti
i (θ) = 0 if

Gi(θ) +
∑
j 6=i

Fij(θ) < Gi(θ
′) +

∑
j 6=i

Fij(θ
′) for some θ′ 6= θ ⇔ θ /∈ Θ∗i ;

(ii) limt→∞ q
hti
i (θ) = 1 if

Gi(θ) +
∑
j 6=i

Fij(θ) > Gi(θ
′) +

∑
j 6=i

Fij(θ
′) for each θ′ ∈ Θ \ {θ} ⇔ Θ∗i = {θ};

(iii)

lim
t→∞

q
hti
i (θ) =

1 +
∑

θ′∈Θ∗i \{θ}

pi(θ
′)

pi(θ)

−1

=
pi(θ)∑

θ′∈Θ∗i
pi(θ′)

if Θ∗i is not singleton and θ ∈ Θ∗i .

Proof of Theorem 2. Consider a given social network Ψ, and take two different agents i, j ∈ N

and the directed path γ̂ij ∈ Γij [Ψ] which conveys the highest amount of information from agent

j to agent i. Using the definition of power of a directed path in (5), we have:

P(γ̂ij) =
∑
M

ψ̂ij(m)D
(
qmi [γ̂ij ] || pi

)
=
∑
M

ψ̂ij(m)
∑
Θ

qmi [γ̂ij ](θ) log
qmi [γ̂ij ](θ)

pi(θ)

=
∑
M

ψ̂ij(m)
∑
Θ

qmi [γ̂ij ](θ) log qmi [γ̂ij ](θ)

−
∑
Θ

pi(θ) log pi(θ)
∑
M

ψ̂θij(m)

[∑
θ′ ψ̂

θ′
ij (m)pj(θ

′)∑
θ′ ψ̂

θ′
ij (m)pi(θ′)

]
= Q(pi, pj)− Eψ̂ij

[
H(qmi [γ̂ij ])

]
.

(15)
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Using Definition 7, it follows that agent j influences agent i if and only if the two following

conditions are satisfied:

(i) Θ∗i = Θ∗j . This condition is satisfied if and only if for any θ ∈ Θj ,

Gi(θ) +
∑
h∈Ni

Fih(θ) ≥ Gi(θ′) +
∑
h∈Ni

Fih(θ′) ∀θ′ ∈ Θ.

Since we know that, for each θ ∈ Θi, Gi(θ) ≥ Gi(θ
′) for each θ′ ∈ Θ, the above condition is

equivalent to require that for any θj ∈ Θj and any θi ∈ Θi

Gi(θj) +
∑
h∈Ni

Fih(θj) ≥ Gi(θi) +
∑
h∈Ni

Fih(θ) ∀θ ∈ Θ.

⇔ Gi(θj) +
∑
h∈Ni

Fih(θj) > Gi(θi) + max
θ/∈Θj

∑
h∈Ni

Fih(θ).

By adding the identity obtained in (15) to both sides of the inequality above, we obtain the

following necessary and sufficient condition for Θ∗i = Θ∗j :

P(γ̂ij) > Gi(θi)−Gi(θj) + max
θ/∈Θj

∑
h∈Ni

Fih(θ)−
∑
h∈Ni

Fih(θj) +Q(pi, pj)− Eψ̂ij
[
H(qmij [γ̂ij ])

]
,

which coincides with the condition stated in (7a).

(ii) Θ∗j = Θj . This condition is satisfied if and only if, for any θj ∈ Θj ,

Gj(θj) +
∑
h∈Nj

Fjh(θj) ≥ Gj(θ) +
∑
h∈Nj

Fjh(θ) ∀θ ∈ Θ.

⇔ Gj(θj) +
∑
h∈Nj

Fjh(θj) > max
θ/∈Θj

[
Gj(θ) +

∑
h∈Nj

Fjh(θ)
]
.

By adding the identity obtained in (15) (upon changing the agents’ subscripts to consider P(γ̂jk)),

where k ∈ Nj , to both sides of the inequality above, we obtain the condition

P(γ̂jk) < Gj(θj) +
∑
h∈Nj

Fjh(θj)−max
θ/∈Θj

[
Gj(θ) +

∑
h∈Nj

Fjh(θ)
]

+Q(pj , pk)− Eψ̂jk
[
H(qmjk[γ̂ik])

]
,

for each k ∈ Nj , which, by rearranging terms, coincides with the condition stated.

Proof of Proposition 1. First, note that application of the result in Theorem 1 to the external

observer leads directly to the result that, for each history ht, limt→∞ q
ht

ob(θ∗) = 1 if and only if

arg maxθ∈Θ
∑

i∈N Gi(θ) is a singleton with arg maxθ∈Θ
∑

i∈N Gi(θ) = {θ∗}.

Second, suppose that a consensus is achieved in the society in a way such that, for some

θ∗ ∈ Θ, we have limt→∞ q
hti
i (θ∗) = 1 for each history hti, for each agent i ∈ N . Then, by using

the result in Theorem 1, it follows that, for each agent i ∈ N ,

Gi(θ
∗) +

∑
j∈Ni

Fij(θ
∗) ≥ Gi(θ) +

∑
j∈Ni

Fij(θ) ∀θ ∈ Θ,
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which, by summing over all agents, implies∑
i∈N

Gi(θ
∗)−

∑
i∈N

Gi(θ) ≥ −
∑
i∈N

∑
j∈Ni

[Fij(θ
∗)− Fij(θ)]. (16)

Therefore, provided that the consensus described above is achieved in the society, if∑
i∈N

∑
j∈Ni

[Fij(θ
∗)− Fij(θ)] < 0 ∀θ ∈ Θ \ {θ∗}

holds, then the condition in (16) above implies that
∑

i∈N Gi(θ
∗) ≥

∑
i∈N Gi(θ) for each θ ∈ Θ,

with strict inequality if θ 6= θ∗. As a consequence, correct limiting beliefs are attained in the

society.

Proof of Proposition 2. Consider the center-directed star network Ψs = {Ψj1 : j ∈ N \ {1}} and

suppose that a consensus is achieved in a way such that, from the results of Theorem 1, for each

agent j ∈ N\{1}, we have Θ∗j = Θ1 = {θ∗} for some given parameter value θ∗ ∈ Θ. Let us define,

for θ ∈ Θ \ {θ∗}, η(θ) := maxj∈N\{1} [Gj(θ)−Gj(θ∗)] and η(θ) := minj∈N\{1} [Gj(θ)−Gj(θ∗)].

First, note that by applying the log-sum inequality for each given m ∈M , we know that

Fj1(θ∗)− Fj1(θ) =
∑
M

∑
S

σsj1(m)φθ1(s) log

∑
S σ

s′
j1(m)φθ

∗
1 (s′)∑

S σ
s′
j1(m)φθ1(s′)

≤
∑
S

φθ1(s) log
φθ
∗

1 (s)

φθ1(s)

[∑
M

σsj1(m)

]
= G1(θ∗)−G1(θ) ∀θ ∈ Θ \ {θ∗} , ∀j ∈ N \ {1} .

(17)

Since we are supposing that the central agent is able to influence each other agent j so that all

agents’ limiting beliefs put probability one on θ∗ being the true parameter value (i.e., Θ∗j = θ∗

for each j ∈ N \ {1}), then it must be the case that Fj1(θ∗)− Fj1(θ) > Gj(θ)−Gj(θ∗) for each

parameter value θ ∈ Θ \ {θ∗} and each agent j ∈ N \ {1}. It then follows from the inequality in

(17) above that G1(θ∗) − G1(θ) > Gj(θ) − Gj(θ∗) for each θ ∈ Θ \ {θ∗} and each j ∈ N \ {1}.

This condition is equivalent to require G1(θ∗)−G1(θ) > η(θ) for each θ ∈ Θ \ {θ∗}.

Secondly, correct limiting beliefs put probability one on some parameter value θ̂ 6= θ∗ being

the true one if and only if ∑
j∈N\{1}

[
Gj(θ̂)−Gj(θ∗)

]
> G1(θ∗)−G1(θ̂).

A straightforward sufficient condition for the requirement above to be satisfied is

η(θ̂) > (n− 1)−1
[
G1(θ∗)−G1(θ̂)

]
.

Therefore, since considering that the influence of the central agent leads to a consensus in which

all agents put probability one to θ∗ being the truth necessarily requires that G1(θ∗)−G1(θ) >
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η(θ) for any θ 6= θ∗, it follows that correct limiting beliefs are not attained if, for some θ̂ 6= θ∗,

the following condition is satisfied.

G1(θ∗)−G1(θ̂) > η(θ̂) > η(θ̂) > (n− 1)−1
[
G1(θ∗)−G1(θ̂)

]
.

The proof is completed by noting that η(θ̂) > η(θ̂) is satisfied by construction and that, in

addition, we can always find some large enough finite n∗ ≥ 1 such that, for each n ≥ n∗, the

sufficient condition above holds.
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